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SUMMARY 
The equations governing immiscible, incompressible, two-phase, porous media flow are discretized by 
generalized streamline diffusion Petrov-Galerkin methods in space and by implicit differences in time. 
Systems of non-linear algebraic equations are solved by Newton-Raphson iteration employing ILU- 
preconditioned conjugate-gradient-like methods to the non-symmetric matrix system in each iteration. The 
resulting solution methods are robust, enable complex grids with irregular nodal orderings and allow 
capillary effects. 

Several numerical formulations are tested and compared for one-, two- and three-dimensional flow cases, 
with emphasis on problems involving saturation shocks, heterogeneous media and curved boundaries. For 
reservoirs consisting of multiple rock types with differing capillary pressure properties, it is shown that 
traditional Bubnov-Galerkin methods give poor results and the new Petrov-Galerkin formulations are 
required. Investigations regarding the behaviour of several preconditioned conjugate-gradient-like methods 
in these type of problems are also reported. 
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1. INTRODUCTION 

In this paper we consider numerical methods for the simultaneous flow of two immiscible fluids in 
a porous medium. Such models are relevant to, for instance, the petroleum industry for predicting 
the displacement of oil by injected water in reservoir rocks. Traditionally, oil reservoir simulators 
have been based on finite difference discretization of the governing partial differential equations. 
Since these equations are highly non-linear and may develop sharp fronts, special care must be 
taken to represent non-linearities and suppress non-physical oscillations in the vicinity of fronts. 
The latter problem is usually circumvented by applying upwind difference schemes. Unfortu- 
nately, such schemes also artificially dissipate sharp fronts and lead to results which are sensitive 
to the direction of the computational grid. For problems in one spatial dimension numerous 
sophisticated higher-order difference schemes have been developed and used with success. 
Nevertheless, first-order methods are still dominant in two- and three-dimensional problems, 
probably owing to their simplicity and their ability to damp non-physical oscillations. 

Most commercial reservoir simulators employ explicit treatment in time of non-linearities (see 
e.g. IMPES formulation' ). Recently, fully implicit methods have increased in popularity because 
they offer robustness and unconditional stability. In some problems they may also be more 
efficient than explicit methods because of less restrictions on the time increments. Implicit time 
schemes give rise to sets of coupled non-linear algebraic equations a t  each time step. Application 
of iterative Newton-like methods to the non-linear equations leads to large, sparse, non- 
symmetric matrix systems in each iteration. The efficiency of implicit methods is therefore 
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crucially dependent on fast (iterative) methods for solving systems of linear equations. We refer to 
Aziz and Settari’ for a review and comparison of finite difference schemes and iterative sparse 
matrix solution techniques that are widely used in commercial simulators. 

Reservoir geometries are generally complex and therefore the application of the finite element 
method is desirable. The flexibility of finite elements is especially valuable in 2D and 3D where 
one can construct, in a consistent manner, methods for irregular grids with, for example, local 
mesh refinements. The finite element method also offers a convenient spatial treatment of non- 
linearities. Contributions concerning application of the standard Bubnov-Galerkin finite element 
method to immiscible two-phase porous media flowzp7 report improved accuracy over finite 
differences and absence of the grid orientation effect. Unfortunately, problems with oscillations 
around sharp fronts and convergence to solutions with wrong shock velocity and strength have 
been reported. Similar problems occur in miscible displacements.*-1° To overcome these diffi- 
culties, several authors have applied ‘upwinding’ techniq~es,~,  9-13 for example Petrov-Galerkin 
or discontinuous Galerkin methods (see Hughes14 for an overview). Experience with these 
modifications has been promising. 

Variations in pressure and saturation occur on different time and space scales in multiphase 
porous media flow. The pressure and saturations are also qualitatively different in that the former 
is smoothly varying while the latter may contain propagating sharp fronts. The different 
qualitative behaviour is of course reflected in the governing equations which are of para- 
bolic/elliptic versus (almost-)hyperbolic type respectively. It seems reasonable to apply different 
numerical methods for updating the pressure and the saturation. Front-tracking methods’ are 
schemes that efficiently exploit the different nature of the equations. However, serious problems 
are associated with these methods when applied to 3D flow and in cases where diffusive effects are 
significant. 

The main contributions of the present paper are related to the development and testing of an 
implicit finite element formulation for two-phase flow. It is particularly focused on topics such as 
a new ‘upwind’ space discretization, capillary heterogeneities, fully implicit versus sequentially 
implicit solution techniques, and efficient iterative solvers for systems of linear equations. These 
topics have previously received minor attention in the literature on finite elements in immiscible 
porous media flow. We will formulate the system of governing partial differential equations in 
terms of a ‘pressure’ equation and a ‘saturation’ equation. The two equations are discretized by 
the finite element method in space and by implicit backward differences in time. Weighting 
functions that have been successful in multidimensional linear convection-diffusion 
probIemsl6. l 7  are adapted to the present two-phase flow equations for accurate treatment of 
sharp fronts. The philosophy behind the present model is generality and robustness. We therefore 
employ simultaneous solution of all unknowns at  each time level. However, a simpler scheme 
where the two differential equations are solved in sequence at each time level may suffice in many 
instances, and we have implemented and tested this approach as well. Comparison of these two 
solution schemes is of interest, since in extensions to, for example, compositional flow, a 
sequential solution of the equations is often required owing to limited computer resources. 

Other authors on finite element methods for reservoir flow have tested their methods mostly in 
1D or on rectangular 2D domains with homogeneous rock properties. In this paper special 
emphasis is devoted to heterogeneous media with discontinuous rock properties and curved 
boundaries. Application of the method in 3D is also reported. 

Generally, the development and testing of efficient iterative solution techniques for large, 
sparse, non-symmetric matrix systems have been restricted to matrices generated by finite 
difference schemes on grids with structured orderings of the unknowns (natural, D2, D4I8) .  Finite 
element methods give rise to less sparse matrices than standard finite differences, especially in 3D. 
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Practical reservoir flow problems also frequently involve complicated geometries and hence 
complicated grids with an irregular node numbering. The resulting coefficient matrix will in such 
cases have a correspondingly complicated sparsity pattern which prevents application of many 
popular preconditioners (e.g. nested factori~ation’~). In this work we test a family of iterative 
ILU-preconditioned generalized conjugate gradient methods applied to the matrix systems 
generated by our finite element schemes. These iterative methods are well suited for complicated 
mesh structures and nodal orderings. 

Section 2 treats the partial differential equations that govern two-phase porous media flow. 
Discretization procedures in space and time are introduced in Section 3. Section 4 is devoted to 
iterative solution of the matrix systems in our implicit scheme. A heterogeneous one-dimensional 
model problem is studied in Section 5, while experiments concerning two-dimensional flow are 
presented in Section 6. An example of three-dimensional flow is reported in Section 7. Results 
from investigations regarding the optimal choice of iterative equation solvers for linear systems 
are given in Section 8, while Section 9 contains concluding remarks. 

2. MATHEMATICAL MODEL 

We consider the flow of two immiscible fluids in a porous medium.’. 2o Mass conservation for 
each fluid phase leads to the continuity equations 

a 
- ( 4 p i S i )  + V.(p iv i )  + qi = 0, i = n, w, 
at 

where Si is the saturation in phase i (i.e. the fraction of the pore volume occupied by phase i), the 
subscripts ‘w’ and ‘n’ refer to the wetting and non-wetting phases respectively, 4 is the porosity 
and vi, pi and qi are the filtration velocity, the density and the production rate respectively of 
phase i. By definition of the saturations we have 

s, + s, = 1, 

p c  = Pn - P w  9 

while the capillary pressure pc  relates the phase pressures P ,  and P,: 

(2) 
with p c  a non-increasing function of S,.  

The momentum equations follow from Darcy’s law with relative permeabilities: 

vi = - I , ( V P i  - pig) ,  i = n, w, (3) 

which is valid as long as the local pore Reynolds number is less than unity. The acceleration due 
to gravity is denoted by g. The phase mobility li equals Kk,Jp i ,  where K is the absolute 
permeability, p i  is the viscosity of phase i and kri is the relative permeability of phase i. k,, is a 
function of S , .  K is in general a tensor quantity, which for simplicity is assumed isotropic in the 
rest of the paper. pi and 4 are here assumed to be independent of the phase pressures. The 
absolute permeability and the porosity are allowed to be space-varying but time-independent. We 
also assume both phases to be incompressible (constant pi). All these assumptions can be relaxed 
in the mathematical as well as in the proposed numerical formulations without any major 
difficulties. 

The equation system above can be reduced to two equations in two scalar unknowns. Here we 
choose P, and S ,  as the primary unknowns. Adding the two continuity equations yields the 
equation 

V - V ,  + Q, = 0, (4) 
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where Q, = Q, + Q,, with Qi = q i / p i .  The total filtration velocity expressed as a function of P ,  
and S ,  reads 

V, V, + V, = -n,VPn + n w p b v s w  + ( J - w ~ w  + kPn)P,  (5 )  

where A, = 2, + 1, and the prime denotes derivation with respect to S,. 
As companion equation to (4) we use the wetting fluid continuity equation 

(6) 
a 
at 
- ( $ S , )  + V - V ,  + Q, = 0, 

where v, as a function of the primary unknowns reads 

v, = -A,(VP, - p,g) + n,p:,vs,. 
In order to make it possible to apply discontinuous weighting functions in the finite element 
formulations, equation (6)  must be rewritten in ‘hyperbolic’ form:” 

(7) 
a 
at 
- ($Sw) + f w v t . v s w  - V. (~WP’ ,VSW)  + V * ( G w g )  - f w Q t  + Qw = O ,  

where f, = I.,/I,, h ,  = -I, f, and G ,  = h,(p, - p,) are known functions of S,. Note that I i , f ,  
and pbh, are positive since kri > 0 and p‘, < 0. Thus the term V.(h ,p‘ ,VS, )  is mathematically 
equivalent to a diffusion term. The hyperbolic nature of equation (7) becomes evident when the 
capillary pressure is regarded as independent of S,.  The equation system consisting of (4) and (7) 
will be referred to as the hyperbolic formulation. In the finite element context the hyperbolic 
formulation has previously been applied by Morgan et al.,’ but in a pure Bubnov-Galerkin 
framework. 

A widely used condition at  wells is that sources and sinks inject and extract fluids in proportion 
to their local mobilities, 

Qw = f w Q t ,  

so that the last two terms in (7) cancel. The similar condition at  the boundary reads 

v;n =fwv;n, (8) 
which corresponds to dp,/dn = 0 (provided that gravity effects can be neglected near wells). n is 
the outward unit normal to the boundary. 

All calculations reported in this paper were carried out using dimensionless quantities. Details 
concerning the scaling are now given. We introduce the characteristic length I,, characteristic 
pressure P,  (not to be confused with the capillary pressure p , ! ) ,  characteristic viscosity p,, 
characteristic density p,, characteristic gravity g,, characteristic permeability K ,  and character- 
istic time t,. Using an asterisk as superscript for representing dimensionless quantities, we have 

x = lcx*, t = t , t * ,  K = K c K * ,  
p .  = p p* Pi  = P,PT, g = gcg*, 1 c t 9 p i = p c / $ )  

P’, = PCP,*’> 
4 = ( ~ C / P C ) V ,  2.: = n: + n;, 
Vi = ( K c P c / ~ c l c ) ~ , * ,  
v, = - I : v * P x  + n:p,*’v*s, + (w/v)(n:p; + n x p x ) g * ,  

Qi  = Q : / t c ,  

2: = K * kri /pT,  
v: = - n : [ v * P ;  - (w/v)p;g*], 

h w  = (Kc/Pc)h;,  h; = -A,* f,, 
G w  = ( K c o c / P c ) G : ,  G; = hZ(p,* - p:). 
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Observe that f,, 4 and Si are dimensionless by definition. The two dimensionless numbers Wand 
V are given by 

v = PCKCtC/P,~,2, w = Pc4cKctc/Pc~c- 
Equations (4) and (7) in dimensionless form then read 

VV* .v: + QF = 0, (9) 
a 

- ( (9S,)  + V[f&v:.V*S, - V**(h:p~’V*S,)] + WV*.(G:g*) - f ,Q:  + Q C = O .  (10) 
at* 

In the rest of the paper the asterisk will be dropped and all quantities will be assumed 
dimensionless. 

3. FINITE ELEMENT FORMULATIONS 

Space discretization 

The coupled non-linear partial differential equation system outlined in the previous section is 
discretized in space by the finite element method. In recent years, mixed finite elements have 
seemed to be the most popular finite element discretization procedure.’” l 3  Besides having the 
advantage of approximating velocity and pressure to the same order of accuracy, mixed finite 
elements give rise to difference equations that are closely related to the dominating block-centred 
finite difference methods.13 Compared to a standard approach, mixed formulations lead to larger 
matrix systems since v, is also introduced as an unknown. It is a serious disadvantage that 
the matrix systems associated with mixed finite elements have a structure which makes it 
difficult to find efficient iterative equation solvers. Owing to this linear algebra difficulty we have 
in this work used the following approach. Let P ,  and S ,  be approximated as 

m 

P ,  = 2 Nj(X)7Cj(t), 
j =  1 

where N j  are trial functions and nj  and aj are nodal values of P ,  and S,, respectively. Multilinear 
trial functions have here been employed for both pressure and saturation. Inserting the approx- 
imate form of P ,  and S ,  in the partial differential equations results in a residual which is forced to 
vanish in a weighted mean over the reservoir. The terms with second-order derivatives are 
integrated by parts to relax the regularity requirements on the trial functions. Owing to the 
hyperbolic nature of equation (lo), a Petrov-Galerkin formulation is adopted for this equation 
with weighting functions of the form 

where K~ and K~ are scalar parameters. Choosing K~ = K~ = 0 results in the standard 
Bubnov-Galerkin method. The term associated with K~ is the well known streamlinediffusion 
term from Reference 16 and adds diffusion in the direction parallel to the total filtration velocity. 
The  term represents a new shock-capturing operator as proposed by Hughes et a1.17 and adds 
diffusion in the direction normal to fronts in S,. We have tried four formulations of the type (13) 
corresponding to different choices of K~ and I C ~ .  These formulations are abbreviated PG1, PG2, 
PG3 and PG4. Details of their mathematical forms are given in Appendix I. PG1 and PG2 use 
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spatial information (element dimensions, etc.) for determining I C ~  and x 2 .  In PG1 only the q-term 
is included. PG3 and PG4 are much simpler in that a global temporal criterion is used: I C ~  = At/2, 
rc2 = 0 (PG3) or rcl = rc2 = At/2 (PG4). The product of the discontinuous weighting function 
perturbations and terms in the equations involving second-order derivatives are, as usual,16 
simply omitted. Therefore the Petrov-Galerkin formulation in conjunction with multilinear 
elements cannot be applied to the saturation equation in the form (6). An important advantage of 
using discontinuous weighting functions on the form (13) is that one obtains a stable spatial 
discretization similar to upwind finite difference but with minor grid orientation effects. Previous 
authors”, have investigated grid orientation effects of ‘upwind’ finite element methods in 
detail, and their conclusion was that the effect was negligible for all types of finite element 
methods tested. 

Time discretization 

The space discretization procedure yields equations for ni and cr, that can be written in the form 

F!’)(n1, . . . ,nm,o l ,  . . . , crm)  = 0, i = 1, . . . ,m, 

C ( 2 )  (nl,.. . ,nm,crl  , . . . ,  om)=0,  i =  1 , . . . ,  m, 
j =  1 

where 9:” and F!’) are non-linear functions and Mi, is a mass matrix. The first equation 
corresponds to the pressure equation and the second to the saturation equation. For stability and 
robustness purposes we have employed an implicit discretization in time: 

F:’)(nl ,  . . . ,n,,,,o,, . . . ,om) = 0, i = 1, . . . ,m,  
m m 

j =  1 j =  1 
CI 1 M i j o j  + AtF!’)(nl, . . . ,nm,crl, . . . ,om) = C Mijz (C j ,  &j) ,  i = 1, . . . ,m. 

Here cri denotes the value of S ,  at node number i at time level t = t , ,  0, is the corresponding value 
at t = t n - l  and di is the value at t = t,-2. The scalar CI and the function z are given as 

z(B,  P) = p, a - 1  (14) 
for a two-level backward Euler scheme and as 

for a three-level backward scheme. Both these schemes are A-stable.21 The two-level scheme (14) 
has a truncation error O(At), while the truncation error of the three-level scheme is O(At2). The 
backward schemes lead to efficient formation of the equation system since the non-linear 
functions of n, and cr, are only evaluated at one time ievel. 

The three-level time scheme should be started with a two-level scheme with accuracy O(At2). 
Herein we use (14) as a starter for (15) with A t  replaced by At/2 in the discrete equations. Provided 
that the injection rates are constant during the first time step, I ,  = 0 at t = 0 and either V P ,  = 0 
or 2; = 0 at t = 0, one can show that the two-level backward Euler scheme generates a solution 
at t = At/2 that coincides with an O(At2)-accurate Crank-Nicholson scheme for the interval 
[O, A t ] .  These assumptions hold for all simulations reported in this paper. 

Let us define sw = X j N j c j  and iw = C j N j d j .  The discretized form of the pressure equation (4) 
becomes 
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The saturation equation (10) is discretized with a Petrov-Galerkin method which leads to 

Fp’ = [ i i a 4 S ,  + A t ( V i i f w v ; V S W  + Vh,p :VNi -VS ,  J* 
+ W G , g - V N i  - 6, f,Q,)]diI - i i (4r(fW, i,) + Q,)dQ J* 
- A t  jda Y N i ( v ,  -f,v,).ndT = 0. (17) 

Besides enabling us to apply discontinuous weighting functions, the hyperbolic formulations also 
offers the advantage of having (8) as a natural boundary condition. Observe that the conditions at 
impermeable boundaries are also included as natural boundary conditions. All integrals on 
multilinear elements are computed numerically using Gauss quadrature with 2’ sampling points. 

Solution of systems of non-linear equations 

The system (16), (17) is highly non-linear in the unknowns aj and nj. Two methods will be 
outlined for the solution of the non-linear algebraic equations. First a fully implicit 
Newton-Raphson scheme is presented and then we consider a method where the pressure and 
saturation equations are solved sequentially at each time level. 

Letting u = (nl, al, n2, c2, . . . , n,, a,)T and f = (FiP) ,  Fy) ,  . . . ,F$), FE))T, the Newton- 
Raphson scheme for the simultaneous solution of the pressure and saturation equations takes the 
form 

ui+l  = ui + i = 0, 1,. . . , 
where hi, solves 

J(~i )Sui+l  = -f(ui). (18) 
Here J is the Jacobian off with respect to u. This implicit solution method is later referred to as 
the Fully Implicit (FI) algorithm. Details of J are given in Appendix 11. As start vector uo for the 
iteration, the solution Fn and f, at the previous time level is used. The iteration is stopped when 
the Euclidean norm off is less than E,. The simulations presented in this paper were carried out 
using E, = 5 x lopz. Numerical experiments have shown that this is a sufficiently accurate value 
in our problems. 

The Sequentially Implicit (SI) algorithm can be described as follows. At each time level we solve 
Flp) = 0, i = 1 , . . . ,n ,  with respect to n l ,  . . . ,n, using saturation values from the previous time 
step. This approach yields a (linear) Poisson equation for the pressure which in discretized form 
reads 

m 2 Bijnj = bi, i = 1, . . . ,m .  
j =  1 

(19) 

Bij and b, are given explicitly in Appendix 11. The non-linear saturation equation F y )  = 0 is then 
solved by Newton-Raphson iteration using the pressure values found from equation (19): 

The advantage with such a solution algorithm is that the size of the matrix system to be solved is 
reduced from 2m x 2m to m x m. In some cases we will solve equation (19) only at each vth time 
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step if P ,  changes much more slowly (in time) compared to S,. We have applied the SI algorithm 
in conjunction with the two-level time discretization scheme exclusively. The SI algorithm has 
previously been used by Morgan et aL5 

It should be emphasized that the non-linearities due to the modified weighting functions in (13) 
are treated explicitly when forming the Jacobians in (18) or (20). The impact of this explicit 
treatment on the convergence of the Newton-Raphson iteration is reported in later sections. 

Table I defines some convenient abbreviations. Let H denote the hyperbolic formulation with a 
two-step time scheme and the FI algorithm. S(v) denotes the SI algorithm with the two-step time 
scheme and pressure computation by (19) at each vth time step. H3 is defined as H except that the 
three-step time scheme is used. We add the symbol BG to indicate that the Bubnov-Galerkin 
formulation is used ( K ~  = x2 = 0). Distinction between consistent and lumped mass matrices is 
represented by a suffix C or L, such as H-BG-L. Similar formulations with PG1, PG2, PG3 and 
PG4 are denoted as H-PG1-C, S(v)-PG2-L and so on. 

4. ITERATIVE SOLUTION OF MATRIX SYSTEMS 

A disadvantage of our implicit time discretization is that several matrix systems must be solved at 
each time level. These matrix systems are characterized by being large, sparse and non-symmetric. 
It is crucial for the overall efficiency and practical applicability of a simulator to apply fast 
equation solvers that utilize the sparseness. Earlier finite element investigators of reservoir flow 
have tended to use direct methods, such as Gaussian elimination. Although direct methods are 

Table 1. Definition of abbreviations for numerical formulations used in the paper 

Abbreviation 

FI 
SI 
H 

H3 
BG 
PG 1 
PG2 
PG3 
PG4 
C 
L 

ILU( I )  
MILU( I )  
OMR(k) 
OWk)  
GCR( k )  
ONk) 
T 
R 
BiCG 
CGS 

~ ~ 

Description 

Fully Implicit algorithm; simultaneous solution for P,  and S ,  
Sequentially Implicit algorithm; P ,  is found first, then it  is implicitly solved for S, 
FI algorithm based on the hyperbolic formulation, (9) and (lo), with two-level time 
scheme 
SI algorithm based on the hyperbolic formulation, (9) and (lo), with two-level time 
scheme and solution of P,  at each vth time step 
As H, but with three-level time scheme 
Bubnov-Galerkin formulation ( K ~  = I C ~  = 0) 
Petrov-Galerkin formulation with rc2 = 0 and spatial criterion for K~ 
Petrov-Galerkin formulation with spatial criteria for x1 and I C ~  
Petrov-Galerkin formulation with temporal criteria: I C ~  = 0, K~ = At/2 
Petrov-Galerkin formulation with temporal criteria: K~ = ic2 = At/2  
Suffix for indicating use of consistent mass matrix 
Suffix for indicating use of lumped mass matrix 

ILU preconditioning with fill-in level 1 (no fill-in: 1 = 0) 
Modified ILU preconditioning with fill-in level 1 
Orthominres iterative equation solver with k recurrence terms 
Orthomin method with k recurrence terms 
Generalized Conjugate Residual method with k recurrence terms 
Orthores method with k recurrence terms 
Suffix for indicating use of truncated method (for OMR and OR) 
Suffix for indicating use of restarted method (for OMR and OR) 
BiConjugate Gradient method 
Conjugate-Gradient-Squared method 
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very robust, the computer time and storage are much larger than for iterative methods, especially 
in 3D problems.22 In practical reservoir flow problems the finite element mesh, and hence the 
nodal numbering, is in general expected to be complicated. We will therefore exclusively be 
concerned with iterative techniques that handle arbitrary matrix sparsity patterns. 

The demands made on an iterative method are generality with respect to nodal numbering, 
robustness, ability to converge quickly on a variety of problems, few user-given parameters and 
low storage requirements. A family of techniques, known as conjugate-gradient-like iterative 
methods, meet our demands. These methods include the use of a preconditioner coupled with an 
acceleration scheme. In contrast to the possibly more efficient multigrid methods, conjugate- 
gradient-like algorithms are easily implemented to enable any nodal ordering and any number of 
unknowns per node. The original Conjugate Gradient method is known to be a simple, robust 
and effective iterative method for problems involving symmetric, positive definite matrices arising 
from self-adjoint differential operators. During the last decade numerous generalizations to non- 
symmetric matrix systems have been developed.23 In reservoir simulation, O r t h ~ m i n ~ ~  (OM) and 
its restarted version Generalized Conjugate Residuals (GCR) are the most popular conjugate- 
gradient-like schemes. It is known from experiments involving linear, scalar convectiondiffusion 
 problem^^',^^ that other conjugate-gradient-like algorithms may be more reliable and effective 
than OM/GCR. Therefore it is of interest to test the performance of other methods in two-phase 
porous media flow. In accordance with previous work2’* 26 we have concentrated on five schemes 
that have proven to be effective and reliable in a wide range of convection4iffusion problems. 
These are Orthomin (OM), or thorn in re^^^ (OMR), Orthores28 (OR), Conjugate Gradients 
Squared29 (CGS) and BiConjugate Gradients3Os 31 (BiCG). In the ith iteration, OMR, OM and 
OR require the use of 2i previously computed vectors of length equal to the number of unknowns. 
To reduce storage demands and increase computational efficiency, only vectors from the last 
k < i iterations are used. This gives rise to truncated versions, here denoted by T-OMR(k), OM(k) 
and T-OR(k). Another possibility is to restart the methods after every kth iteration, which leads to 
restarted versions: R-OMR(k), GCR(k) and R-OR(k). Observe that GCR(k) is the restarted 
version of OM(k). Algorithms for CGS, OMR and OM are listed in Appendix 111 in a form for 
straightforward implementation. Convenient algorithms for BiCG and OR can be found in 
References 3 1 and 32 respectively. Mathematical properties of our five conjugate-gradient-like 
methods are covered in References 23, 24, 27,28 and 33. 

The efficiency of a basic conjugate-gradient-like method is usually considerably increased by 
applying a preconditioner. That is, instead of solving the original matrix system Ax = b, the 
methods are applied to the equivalent system M- Ax = M- b. The preconditioning matrix M 
should be a good approximation to A, cheap to compute and have low storage requirements, and 
systems with M as coefficient matrix should be effectively solved. A preconditioner suited for 
matrix systems with arbitrary sparsity patterns is the incomplete LU factorization method. This 
technique consists of letting M = LU, where LU is an approximate LU factorization of A 
computed by Gaussian elimination with omission of all fill-in. The factors L and U, which are 
lower and upper triangular respectively, have thus the same sparsity pattern as A. To achieve a 
better approximation to A one can allow a certain amount of fill-in in L and U. Let ILU(I) denote 
incomplete LU factorization with fill-in level 1. Rejection of all fill-in corresponds to 1 = 0. The 
sparsity of level 12 1 factors L and U results from multiplication of level 1 - 1 factors. 
G u s t a f ~ s o n ~ ~  suggested adding the fill-in terms to the main diagonal. This technique is known as 
modified incomplete LU (MILU) factorization. The preconditioners ILU(1) and MILU( 1 )  for 
matrices with arbitrary sparsity patterns are described and tested on linear convectiondiffusion 
problems in Reference 26. The same methods and computer implementation are employed here. 
Abbreviations for preconditioners and acceleration schemes are included in Table I. 
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Comparison and brief descriptions of ours and other popular preconditioning techniques in 
reservoir simulation are given in e.g. References 18, 19 and 35-37. We emphasize that many of the 
cited papers employ preconditioners not readily applicable to matrices with arbitrary sparsity 
patterns. This is particularly the case for nested factorization and other block preconditioners. 

The SI formulation requires solution of the (linear) pressure equation (19) where the coefficient 
matrix is symmetric and positive definite. This system is solved by the standard conjugate 
gradient method with incomplete Cholesky factorization. Since the equation is linear, values of 
the pressure at the previous time level are used as start vector for the iteration. We use the null 
vector as initial guess for the conjugate-gradient-like methods when applied to the equation 
systems occurring in each Newton-Raphson iteration. The computational labour of an equation 
solver applied to a specific problem is measured in work units. One work unit is defined as one 
multiplication (division) per unknown.18 Work units are given to three significant digits. An 
iterative equation solver is considered as converged when the Euclidean norm of the residual is 
less than E,. Automatic adjustment of E, during the Newton iterations is po~sible,~' but we have 
here used a fixed value of E, = 5 x Numerical experiments have confirmed that this value 
gives sufficient accuracy for the problems reported in this paper. 

5. ONE-DIMENSIONAL FLOW 

The standard Buckley-Leverett test example in a homogeneous rock has been run, but this test 
was found to be too simple for achieving a clear differentiation between our formulations. Instead, 
a more complicated one-dimensional test problem has been constructed. Consider a horizontal 
heterogeneous reservoir with two different rock types as shown in Figure l(a). The non-wetting 
fluid (oil) was displaced by the wetting fluid (water). The flow was driven by a prescribed pressure 
difference A P  between the injection (source) and production (sink) wells, and S ,  was fixed at unity 
at the injection well. Known pressure values are incorporated as essential boundary conditions in 
the pressure equation, while known saturation values are incorporated in the saturation equa- 
tion. In this case essential conditions for the saturation equation occur only at the sink, and the H 
formulation automatically gives the condition (8) at the source, which can be applied also after 
water breakthrough. At t = 0, S ,  = 0. Only pressure differences, and not the absolute values, are 
of physical significance in incompressible flow. For convenience the initial level of P ,  was 
therefore chosen to be zero. 

Tables I1 and I11 display the values of the physical parameters. Observe that implicit in the 
formulae for the relative permeabilities are values of zero for the irreducible water saturation and 
residual oil saturation. The dimensional rock properties in this test problem are of the same order 
as those used by Spivak et al.' Owing to the discontinuity in the capillary pressure derivative, and 
the requirement of continuous phase pressures, a stationary discontinuity in the saturation arises 
at the interface between rock 1 and rock 2 ( x  = 12 in Figure l(a)). There will be a saturation 
shock wave in rock 1. This wave is smeared, owing to capillary effects, in rock 2. 

The different numerical formulations were tested on a grid consisting of 40 x 1 bilinear 
elements, giving the element length A x  = 1. Representative saturation profiles for the wetting 
phase are shown in Figures l(b)-l(h) at three different time levels, t = 0.1,0.2 and 0.3 (correspond- 
ing to 1000, 2000 and 3000 days respectively). The value of At was held fixed at 5 x in all 
simulations. A refined grid with 300 x 1 bilinear elements and At = 5 x was used for 
obtaining a reference solution. All formulations based on the two-level time scheme seemed to 
converge to this reference solution. Banded Gaussian elimination was employed for solving the 
very narrow band matrix systems in this problem. 
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Figure 1. Unidirectional flow in a horizontal, heterogeneous reservoir. S,(x, t) is plotted as a function of x for three 
different time levels, corresponding to t = 0.1,0.2 and 0.3. The dotted lines represent the numerical solution with Ax = 1 
and At = 5 x A reference solution is indicated by the solid line. (a) Sketch of the one-dimensional test example 
involving two porous materials with different rock properties; (b) S, computed by H-BG-L; (c) H-PG1-L; (d) H-PG1-C; 

(e) H3-BG-C; (f) H3-PG1-L; (g) S(1)-PGl-L; (h) S(1O)-PGl-L 
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Table 11. Values of characteristic quantities 
and rock-independent dimensionless physical, 

parameters 

Parameter Value 

t C  

KC 

P C  

P W  
P C  

P" 
AP 
At  
V 
W 

10.0 m 
8.64 x 10' s 
2.10x 10-14m2 

kgm-- 's- '  
5.5 kPa 
1.0 
4.0 
2000 

1 .o 
0 

5 x 10-3 

Table 111. Values of dimensionless rock properties for the test 
problem in Section 5 

Parameter Rock 1 Rock 2 

Porosity 4 0.25 035 

Relative permeability k,, s: Sb 
Relative permeability k,, (1 - S,)2 (1 - S,)Z 

Absolute permeability K 1.0 1.5 

Capillary pressure p :  0 - 25.0 

All methods based on the standard Bubnov-Galerkin approximation led in this example to 
node-to-node oscillations in S ,  after the shock entered rock 2; see Figure l(b). The PG4 
formulation damped the oscillations slightly. No considerable improvement was achieved by 
using PG3 in comparison to BG. Satisfactory results were obtained by PG1 and PG2, which in 
1D give identical results (see Appendix I). Figure l(c) shows that H-PG1-L produced saturation 
profiles where all discontinuities were resolved within two elements, with negligible over- and 
undershoots. We have found that for the other formulations, which lead to non-physical 
oscillations around discontinuities, these oscillations were significantly reduced with diminishing 
element size. Small oscillations downstream of the shock, which were present when applying the 
consistent mass matrix, were suppressed using the lumped mass matrix. This effect can be seen by 
comparison of Figures l(c) and l(d). The improved performance of mass lumping in this type of 
non-linear problem is in accordance with the findings of other investigators.', 

The three-level time discretization scheme was clearly inferior to the two-level scheme. H3-BG- 
C and H-3-BG-L were the only formulations that suffered from wrong shock velocity and shock 
strength (Figure l(e)). As the element size was diminished, H3-BG-C and H3-BG-L converged to 
the wrong solution. Application of the discontinuous weighting functions improved the results 
considerably, as seen in Figure l(f). Lumping the mass matrix seemed more demanded for the 
three-level scheme than for the two-level scheme; for example, H3-PG1-C was clearly inferior to 
H3-PGI-L. Convergence to the wrong solution for the three-level scheme also occurred in the 
standard Buckley-Leverett problem. 
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The variants of the FI algorithm required two to three Newton iterations per time step, except 
when combined with PG2 which demanded about one extra Newton iteration. This slower 
convergence is expected since the PG2 formulation introduces significant non-linearities which 
presently are treated explicitly in the Newton-Raphson scheme (see Appendix 11). The SI 
methods needed up to twice as many Newton iterations as the corresponding FI formulations. 
For both families of methods the convergence rate was slightly improved when the (smeared) 
saturation front moved through rock 2. The results of the SI algorithm were in accordance with 
those obtained by the FI algorithm, and the accuracy was only slightly inferior to the latter, as 
seen in Figure l(g). Large values of v led to further reduced accuracy, and Figure l(h) shows an 
example of S( 10)-PGl-L. 

It is known a priori that S ,  must lie in an interval [S, , ,  SwM]. In the rest of the paper we have 
employed this information and consequently set non-physical S ,  values equal the appropriate 
upper or lower limit. This approach avoids undershoots downstream of the front, for example. 

6. TWO-DIMENSIONAL FLOW 

In this section the different numerical formulations are applied to a two-dimensional analogue to 
our one-dimensional test example in Section 5. Figure 2 shows a horizontal reservoir containing 
two porous media. The wetting fluid was injected along a line on the boundary and production 
took place in two point-wells. The rest of the boundary was assumed to be impermeable. Physical 
parameters are as in Table I1 and the rock properties are listed in Table IV. Values of At smaller 
than 5 x were necessary at the beginning of the simulations. Initially, S ,  = P, = 0. During 
the initial stages of the displacement a saturation shock propagates through rock 1. As this shock 
enters rock 2, where capillary effects are significant, it is diffused. However, a part of the shock 
wave moves outside rock 2 and maintains its sharp front. The discontinuity in p:  leads also in this 
problem to a stationary saturation discontinuity at parts of the boundary between the two media. 
The finite element mesh depicted in Figure 3 is refined along the boundary between rock 1 and 2 
in order to resolve the rapid variations in the saturation function tangentially to the front. 
Numerical comparison with a similar physical problem in a geometry with straight boundaries 
showed that the present problem made greater demands on the numerical solution methods. 

The different formulations resulted in almost identical pressure fields. Figure 4 gives an 
example of the smoothly varying P, function. We mention that special considerations must often 
be taken to numerically represent steep pressure gradients in the vicinity of wells.l3, 39 This is not 
strictly required here since the gradients are moderate owing to finitely prescribed well pressures. 

Rock 2 U I  Sink 

Source 

Figure 2. Sketch of 2D flow problem in a reservoir containing rocks with different properties. The area of the domain 
is 478 (dimensionless) 
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Table IV. Values of dimensionless rock properties for the test 
problem in Section 6 

Parameter Rock 1 Rock 2 

Porosity 4 0.25 0.40 
Absolute permeability K 1 .o 1.5 
Relative permeability k,, s ;5  S;S 
Relative permeability k,, (1 - S,)Z (1 - S,)2 
Capillary pressure p i  0 - 15.0 

Figure 3. Finite element mesh corresponding to the problem depicted in Figure 2. There are 576 elements with 625 nodes 

Figure 4. Pressure and total filtration velocity at t = 0 2  computed by H-PG2-L for the problem in Figure 2. Left: 
elevated contour lines representing P,.  Right: velocity vectors representing v, 

The standard H-BG-L formulation produced poor results for the saturation field. Typical 
features were node-to-node oscillations as shown in Figure 5. The location and shape of the front 
were also inaccurate. We have implemented and tested the FI algorithm with the saturation 
equation of the form (6). This formulation gave better results with respect to the front propaga- 
tion velocity. The node-to-node oscillations were nevertheless still present. The same conclusion 
also applied to  the 1D problem in Section 5. The PG1 formulation led to considerable improve- 
ments (Figure 6), but PG2 clearly gave the best results (Figure 7). The superior behaviour of PG2 
compared with PG1 in this flow case can be explained. From the definition of rc2 in the PG2 
formulation (see Appendix I) we see that rc2 vanishes if the saturation front is normal to the 
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Figure 5. S, computed by H-BG-L plotted as a function of the space co-ordinates for t = 0 2  (2000 days). The physical 
problem is depicted in Figure 2. Left: elevated equidistant contour lines. Right: plane equidistant contour lines 

Figure 6. S, computed by H-PG1-L. See caption to Figure 5 

streamlines. This is to a large extent the situation in many simple flow problems, e.g. the five-spot 
well pattern. However, in this flow problem the steep saturation gradients are not always normal 
to the streamlines and therefore the rc,-term will have a significant effect. In contrast to the I C ~ -  

term, the Ic,-term adds diffusion normal to the thin saturation boundary layer and hence 
suppresses the oscillations seen in Figure 6. Temporal criteria for rcl and rc2 were again clearly 
inferior to the spatial criteria. 

The three-level scheme in combination with PG2 led to inferior results compared to the two- 
level scheme; see Figure 8 for an example of H3-PG2-L. Figure 9 shows a fine mesh and a 
saturation field to be compared with that in Figure 7. We see that the wavy contour lines behind 
the front are still present. 

With this value the 
Newton-Raphson method needed one to four iterations. Longer steps were possible in parts of 
the simulation, but the value of At then fluctuated, which was less convenient (and not always 
more efficient) when several methods were to be compared. Smaller values of At gave results in 
accordance with those for At = 5 x In this example the SI algorithms were significantly 
less robust than the fully implicit schemes, especially when combined with PG2. The SI 
algorithms required smaller time steps in order for the Newton iteration to converge: At < 1-25 
x The Newton-Raphson method also required up to twice as many iterations as needed 
in the FI algorithm. Particularly behind the front, the S(v)PG2-L method gave less accurate 

All results in Figures 4-9 were computed with A t  fixed at  5 x 
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Figure 7. S ,  computed by H-PG2-L. See  caption to Figure 5 

Figure 8. S, computed by H3-PG2-L. See caption to Figure 5 

Figure 9. Left: refined mesh with 1470 elements. Right: S, at t = 0.2 computed by H-PG2-L on the refined mesh 

results than H-PGZL. Our experience indicates that v may be chosen large, say v = 10 in this 
example, without further significant reduction of accuracy. 

In our implementation the SI method is, for large values of v,  about twice as fast as the FI 
algorithm with respect to computation of the matrix systems. The time spent on iterative 
solution of the linear systems in the SI algorithm is in this problem almost negligible in 
comparison with the calculation of the matrices. In the FI algorithm, iterative solution of the 
systems is about as time-consuming as the computation of the systems. Taking into account 
that the SI algorithm usually needs more Newton iterations per time step than the FI method, 
the SI solution strategy is then two to three times faster than the FI strategy, provided that At is 
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the same for both. In this particular problem where the SI algorithm required about four times 
as many time steps as the FI version, the latter turned out to be the most efficient approach. 

7. THREE-DIMENSIONAL FLOW 

Since there is no major dependence on the number of space dimensions in the proposed 
numerical methods, they can easily be implemented to treat both two- and three-dimensional 
flow cases within the same code lines. It is also to be expected that the accuracy of the methods 
should be the same in 3D as in 2D. In order to demonstrate this assertion, a simple three- 
dimensional flow problem is considered next. Figure 10 shows a homogeneous reservoir shaped 
as a deformed cube. A relatively coarse mesh was used, consisting of l o x  l o x  10 trilinear 
bricks. At t = 0 the reservoir contained the non-wetting fluid only, at hydrostatic pressure. The 

Sink 

Figure 10. Sketch of three-dimensional flow problem in a homogeneous medium. The volume of the reservoir is 29400 
(dimensionless) 

Table V. Values of physical parameters for the test 
problem in Section 7 

Parameter Value 

1, 
t C  

Kc 
P C  

PC 
P c  
9 c  
P W  

Pn 
Pw 

P n  
AP 
At 
V 
W 

K 
4 

k,W 
krn 
p :  

10-Om 
1.73 x lo6 s 
1.77 x lo-'' mz 
10-3 kgm- l s - '  
32.7 kPa 
10oO kgm-3 
9.81 ms-2  
1.0 
4.0 
1 .o 
0833 
20 
0 5  
1 -0 
0.03 
0.25 
1 .o 

0 
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wetting fluid was injected at  four nodes (where S,,, = 1). The production well also consisted of 
four nodes. Values of the physical parameters are listed in Table V. 

The ILU(0) preconditioned T-OMR(5) was used as equation solver in this and in the previous 
section. A report on the behaviour of other conjugate-gradient-like algorithms for these 
problems is given in the next section. Figure 11 shows the intersection of the reservoir boundary 
and equidistant contour surfaces of pressure and saturation. Taking into account the coarse 
mesh and that p’, = 0, the results must be regarded as good and indicate that the numerical 
methods work as expected from similar 2D simulations. H-PG1-L was used for producing the 
results in Figure 11. The differences between PG1 and PG2 were small since the saturation 
front was approximately normal to the streamlines (see the discussion in Section 6). S(25)-PG1- 
L was also tested and gave results almost identical to those in Figure 11. However, the SI 
algorithm required twice as many Newton iterations per time step and occasionally smaller 
time steps than the FI version. The overall efficiency was therefore about the same for the two 
approaches when using the grid in Figure 10. Superior efficiency of SI compared with FI is 
expected as the number of elements is increased. Algthough the present problem involved more 
elements than the problem in Section 6,  it required only about four times as much work per 
time step. 

8. BEHAVIOUR OF ITERATIVE EQUATION SOLVERS 

Development and comparison of iterative equation solvers frequently use the stationary, linear, 
scalar convection-diffusion equation as model problem. One of the clearest conclusions from 
comparison experiments with the convection-diffusion equation is that the results are highly 
pr~blem-dependent .~~,  26 The main purpose of this section is therefore to present some 
experimental convergence results for a more physically complicated problem. Two-phase 

Figure 11. Intersection of the reservoir boundary and equidistant pressure (left) and saturation (right) contour surfaces. 
Results are computed by H-PG2-L and shown for t = 100 (2000 days). Top: facing boundary. Bottom: hidden boundary 
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porous media flow is described by differential equations of convection-diffusion nature but 
with two unknowns per node (FI algorithm). This leads to less sparse matrices which implies 
that the matrix-vector product(s) will consume a larger portion of the total work per iteration 
compared to the case with a single unknown per node. 

Besides the problems described in Sections 6 and 7, a simpler homogeneous two-dimensional 
problem has to a large extent been used for testing equation solvers. Figure 12 depicts this 
problem. Owing to symmetry, only the upper half of the reservoir needs to  be discretized. 
Source and sink nodes with specified P, values are indicated by the thick lines in Figure 12. S ,  
was kept equal to unity at the source. Values of the physical parameters are as in Table I1 and 
Figure 12. For all simulations we used a grid with 40x20 bilinear elements and fixed At.  
Figure 13 shows examples of the wetting fluid saturation field. Cases with significant capillary 
effects were satisfactorily treated by all formulations. The differences between Bubnov- 
Galerkin and Petrov-Galerkin formulations for vanishing capillary pressure derivative 
were much smaller here than in the problems in Sections 5 and 6. For many practical purposes 
the Bubnov-Galerkin formulation gives acceptable results in simple problems like this. 

Average work units (and iterations) over some time steps have been calculated for different 
combinations of preconditioners and acceleration schemes in several reservoir flow cases. The 
main results are summarized below. 

Fully implicit formulation 

First we discuss the equation solvers applied to the matrix systems associated with the FI 
algorithm. The behaviour of the equation solvers showed little sensitivity to various values of 
the time step length. The number of Newton iterations was of course independent of the equation 
solver being used as long as the equation solver converged properly and fulfilled the termination 
criterion. Divergence of the five preconditioned equation solvers used here (OMR, O M ,  CGS, OR 
and BiCG) was due to an underlying divergence of the Newton method. This assertion was 
justified by applying banded Gaussian elimination as equation solver in selected cases. 
Reduction of the time step length made the Newton method converge and thus also the 
conjugate-gradient-like schemes. The number of iterations required by the conjugate-gradient- 
like methods was usually about the same for each Newton iteration. 

Table VI shows the average performance of some ILU(2) preconditioner and conjugate- 
gradient-like schemes in the problem from Figure 12. We have also tested the MILU(1) 

Figure 12. Sketch of a two-dimensional test example involving a horizontal homogeneous reservoir. The size of the 
reservoir is [O, 401 x [O, 401 
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Figure 13. S, at t = 0.2 for the problem depicted in Figure 12. Functions are visualized by elevated equidistant contour 
lines. Top: p: = - 10, computed by H-BG-L. Bottom left: p i  = 0, computed by H-BG-L. Bottom right: p:  = 0, computed 

by H-PG1-L 

Table VI. Work units, with number of iterations shown in parentheses, 
based on average over three time steps in a simulation corresponding to 
Figure 12; 800 bilinear elements, 1722 unknowns, A t = 5  x and p:  = 0; 

H-PGl-L formulation 

Preconditioning 

Method ILU(0) ILU( 1) ILU(2) 

CGS 1040 (12) 1040 (9) 1030 (6) 
T-OMR(5) 887 (8) 842 (5) 921 (4) 
BiCG 1410 (17) 1240 (11)  1210 (8) 
OM(5) 913 (15) 835 (10) 869 (7) 
T-OR(5) 1170 (20) lo00 (13) 881 (8) 

preconditioner, but ILU performed in general clearly better than MILU. However, in combina- 
tion with OM@), MILU was occasionally competitive with ILU and in a few cases even 
superior. All. formulations except H-PGZC gave similar convergence results for the iterative 
methods (H-PG2-C led to slower convergence). Tables VII and VIII show the average 
performance of conjugate-gradient-like methods applied to the problems in Sections 6 and 7 
respectively. ILU(1) increases the storage of the preconditioning matrix by a factor of 1.44' for 
bilinear elements and natural node numbering. The corresponding factor for trilinear 
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elements is 21'. Previous investigations26 showed clear inefficiency of 12 1 in 3D owing to 
the significant decrease in sparsity with increasing 1. Therefore only ILU(I) for I = 0 was tested 
in 3D. Comparing Tables VI and VII we see that ILU(1) is the most efficient preconditioner. 
However, the small differences between ILU(1) and ILU(0) favour ILU(0) because of its lower 
storage requirements. None of the tested equation solvers has been observed to diverge (or 
converge very slowly) in combination with ILU(I) preconditioning, provided the Newton 
iteration converged. Without preconditioning, the equation solvers converged much more 
slowly, and occasionally several hundred iterations were needed to fulfil the termination 
criterion. In some cases non-preconditioned equation solver algorithms broke down. 

A difficulty in applying methods with long recurrences is to choose between the restarted and 
the truncated version and to find an optimal value of k. Our numerical experiments indicate 
that OM is most efficient in the truncated version, while OR and OMR are less sensitive to the 
choice of restart or truncation. The optimal value of k for OM(k), T-OMR(k) and R-OMR(k) 
was usually k < 10, and k = 5 is recommended as an all-round choice. GCR(k) performed most 
efficiently for somewhat larger k. OR was in general less effective than OMR and OM. In linear, 
scalar convection-diffusion problems k = 1 usually represents the optimal k value.25 This is 
seldom the case in multiphase reservoir problems. For example, GCR(l), which is very effective 
in linear convection4iffusion problems, converged slowly in our test examples. Table IX-XI 
show how the numbers of work units and iterations change with restart/truncation and the 
value of k for ILU(0)-preconditioned OM/GCR and OMR. 

Table VII. Work units, with number of iterations shown in parentheses, 
based on average over three time steps in a simulation corresponding 
to Figure 2; 576 bilinear elements, 1250 unknowns, At=2.5 x and 

physical parameters as in Section 6; H-PG2-L formulation 

Preconditioning 

Method ILU(0) ILU( 1) ILU( 2) 

CGS 791 (9) 723 (6) 775 (4) 
T-OMR(5) 657 (5) 691 (4) 730 (3) 
BiCG lo00 (12) 906 (8) 931 (5) 
OW51 770 (12) 672 (8) 697 (5) 
T-OR(5) 927 (15) 664 (8) 691 (5) 

Table VIII. Work units, with number of iterations shown in 
parentheses, based on average over three time steps in a 3D 
simulation corresponding to Figure 10; lo00 bilinear elements, 
2662 unknowns, At=025 and physical parameters as in 

Section 7; H-PG1-L formulation 

Method ILU(0) 

CGS 2130 (8) 
T-OMR( 5) 1420 (4) 
BiCG 2070 (8) 

1520 (8) 
2180 (15) 

O W )  
T-OR(5) 
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Table IX. Work units, with number of iterations shown in parentheses, based on average over three time 
steps in a simulation corresponding to Figure 12; 800 bilinear elements, 1722 unknowns, At = 5 x and 

p i  = 0; ILU(0) preconditioning and H-PG1-L formulation 

Method k = l  k = 3  k = 5  k = 7  k = 9  

992 (10) 887 (8) 952 (8) 1050 (8) T-OMR( k) 2050 (14) 
R-OMR( k) 1980 (23) 1120 (12) 992 (10) 895 (8) 917 (8) 

865 (15) 913 (15) 994 (14) 1090 (15) 808 (16) 
1430 (32) 1310 (27) 1080 (21) 917 (16) 1060 (18) GCR( k) 

OM(k) 

Table X. Work units, with number of iterations shown in parentheses, based on average over three time 
steps in a simulation corresponding to Figure 2; 576 bilinear elements, 1250 unknowns, At  = 2 5  x and 

physical parameters as in Section 6; ILU(0) preconditioning and H-PG2-L formulation 

Method k = l  k = 3  k = 5  k = 7  k = 9  

T-OMR( k) 1460 (17) 805 (8) 657 (5) 703 (5) 750 (5) 
R-OMR( k)  1580 (19) 822 (8) 668 (6) 622 (5) 645 (5) 

738 (15) 791 (14) 770 (12) 748 (10) 813 (10) 
1190 (26) 997 (20) 760 (14) 873 (15) 688 (11) 

O W )  
GCR(k) 

Table XI. Work units, with number of iterations shown in parentheses, based on average over three time 
steps in a 3D simulation corresponding to Figure 1 0  1000 bilinear elements, 2662 unknowns, At  = 0.25 and 

physical parameters as in Section 7; ILU(0) preconditioning and H-PG 1-L formulation 

Method k = l  k = 3  k = 5  k = 7  k = 9  
~ 

T-OMR( k) 5480 (25) 1420 (4) 1420 (4) 1450 (4) 1480 (4) 
R-OMR(k) 5150 (24) 1610 (5) 1470 (4) 1390 (4) 1410 (4) 

1450 (9) 1540 (9) 1520 (8) 1590 (9) 1620 (8) 
3090 (26) 2550 (20) 1530 (9) 1810 (12) 1680 (10) GCR(k) 

OM(k) 

Our experiments indicate that OM and OMR were the best acceleration schemes, especially 
in 3D. The CGS method, which is among the very best when solving scalar 
convection-diffusion problems, was somewhat inferior here. Since a very large portion of the 
work per iteration in the CGS method is spent on the two matrix-vector products, CGS is more 
sensitive to the decrease in sparsity that occurs when the number of unknowns per node is 
increased from one to two, and when the number of non-zeros per row is increased by a factor of 
three when going from two to three space dimensions. Without preconditioning, CGS was the 
best method. However, preconditioning seems in general to be required both for stabilizing the 
iterative schemes and for increasing the efficiency. 

It is of interest to investigate how the preconditioners behave when the matrix sparsity 
pattern becomes irregular, which may happen for complicated geometries or adaptively refined 
grids.26 The results in Table VII correspond to a regular (row-by-row) node numbering and 
hence a standard nine-band sparsity pattern, where each band consists of 2 x 2 blocks. An 
irregular node numbering produced by a general preprocessor technique26 gave the sparsity 
pattern shown in Figure 14. This type of sparsity pattern is also generated by certain adaptive 
mesh techniques.26 The preprocessor assumes that the domain is divided into several simple 
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Figure 14. Matrix sparsity pattern associated with a node numbering produced by a general preprocessor technique 
applied to the problem in Figure 2 

subdomains (four in the present case). The internal nodes within each subdomain are regularly 
numbered and then the nodes on the boundaries between the subdomains are given numbers. 
Compared to the case with regular node numbering, the ILU(0) preconditioner was still robust, 
but we experienced roughly a doubling of the number of iterations. This must be regarded as 
satisfactory taking into account the large increase in fill-in entries when the sparsity pattern 
becomes complex. The decrease in efficiency was however larger than in the case with only one 
unknown per node.26 

Sequentially implicit formulation 

The picture changes drastically when we consider iterative solution of the matrix systems 
occurring in the SI algorithm. To update the pressure only one to two iterations are necessary, 
occasionally slightly increasing with v .  The solution of the matrix system in equation (20) usually 
required one to four iterations when pb = 0. A couple of additional iterations were needed when 
the saturation front moved through the medium with significant diffusion (capillary) effects. Most 
of the work is thus spent on calculating the matrix system and not on the solution process. It is 
therefore somewhat irrelevant to search for an optimal equation solver, and the most reliable 
method mentioned above is recommended. In some cases it is even beneficial to apply the 
equation solvers without preconditioning, at a cost of considerably decreased reliability. 

It is known that second-order elliptic equations, such as our pressure equation, give rise to 
matrix systems where the coefficient matrices have a condition number 0(K2), h being a measure 
of the element size. First-order hyperbolic equations lead to better conditioned matrices, typically 
O (  h- ' ) .  Therefore iterative solution of matrix systems arising from the saturation equation will 
be more effective than iterative solution of systems from the pressure equation, provided that IpkI 
is small. When using the FI algorithm the pressure equation dictates the conditioning of the 
Jacobian, while in the SI algorithm the two equations give rise to two differently conditioned 
matrix systems. Thus a sequential solution method diminishes the size of the matrix systems, 
takes advantage of the good conditioning of the saturation equation and enables the use of a very 
good start vector for the iterative solution of the pressure equation. 

All numerical results in this paper have been obtained by a FORTRAN 77 code developed by 
the author and run in single precision on an FPS-164 array processor (64-bit arithmetic). 
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9. CONCLUSIONS 

Several implicit and robust finite-element-based methods for the equations governing incom- 
pressible, immiscible, two-phase porous media flow have been described and tested. The main 
subjects of this paper concern adaptation and investigation of a family of discontinuous weighting 
functions, demonstration of the very poor behaviour of traditional finite element formulations in 
a certain class of heterogeneous problems, and use of general and effective preconditioners in 
combination with conjugate-gradient-like acceleration schemes for solving matrix systems. The 
main results can be summarized as follows. 

In problems where capillary effects were significant throughout the reservoir, the pressure and 
saturation fields were smooth and any of the proposed formulations worked well. Difficulties 
were encountered when sharp saturation fronts developed in rocks with negligible capillary 
effects. In this case standard Bubnov-Galerkin formulations gave oscillations in the vicinity of 
propagating saturation fronts. These oscillations were to a large extent suppressed by any of the 
proposed Petrov--Galerkin formulations. The pressure field seemed to be handled accurately by 
all methods tested. In problems where the rock properties were homogeneous throughout the 
domain, the differences between the results from the various numerical formulations were 
relatively small provided the entropy condition was fulfilled. However, this picture changed 
drastically for the heterogeneous problems considered. Discontinuous capillary pressure proper- 
ties introduced significant oscillations and other inaccuracies, such as wrong propagation 
velocity, in the saturation fields for many of the methods, including all standard 
Bubnov-Galerkin formulations. Promising results were obtained with a new Petrov-Galerkin 
method employing weighting functions that add diffusion both along streamlines and in the 
direction normal to the saturation front. This Petrov-Galerkin formulation did not increase the 
width of the shock fronts in comparison to the standard Bubnov-Galerkin formulation, and 
fronts usually extended throughout two multilinear elements. Optimizing parameters in the 
weighting functions should be based on spatial rather than temporal criteria. It is important to 
note that in order to apply the present discontinuous weighting functions, the saturation equation 
must be written in ‘hyperbolic’ form. 

The S(v) formulation, where the pressure and saturation equations are numerically decoupled 
and P ,  is solved for only at each vth time step, worked very efficiently in simpler flow problems. 
The main advantages of this approach are smaller matrix systems to be solved and the possibility 
for pressure computation at only a few time levels. In addition, the matrix systems are more 
effectively solved owing to good starting values for the pressure and good conditioning of the 
coefficient matrix arising from the saturation equation (provided is small). The seqential 
formulation also offers the possibility of using different numerical methods for the elliptic 
pressure equation and the (almost-)hyperbolic saturation equation. However, the convergence of 
the Newton-Raphson iteration was considerably slower and the accuracy was usually inferior 
compared to the fully simultaneous H formulation. In more complicated problems, such as that in 
Section 6, the decoupling procedure led to decreased reliability and a requirement for smaller 
time steps. The SI algorithm is usually more efficient than the FI algorithm provided that the time 
step length is the same for both. In simpler problems the SI algorithm is generally the 
recommended solution scheme, but in physically complicated cases a fully implicit approach is 
much more reliable and occasionally also more efficient. In a particular problem it is difficult to 
evaluate the performance of a sequential approach without having a fully implicit simulator for 
comparison. 

The time discretization was carried out by A-stable backward differences. It seemed that the 
simple two-level backward Euler scheme performed better than the three-level second-order 
scheme. For the linear, scalar convection4iffusion equation the Euler scheme can be shown to 
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produce an O(At) diffusion in the streamline direction. We think that this diffusion, which is not 
provided by the three-level scheme, is advantageous in the present non-linear problems to 
stabilize solutions around sharp fronts and contribute to the fulfilment of the entropy condition. 

Five acceleration schemes were tested in combination with ILU(1) preconditioning. Taking 
into account both efficiency and storage requirements, ILU(0) is the recommended precondi- 
tioner. However, in difficult problems 1 = 1 or 1 = 2 may be more reliable choices. T/R-OMR(k) 
and OM(k) turned out to be the most effective acceleration schemes, with R-OMR(k) slightly 
superior to the others. In contrast to scalar convection-diffusion problems where k = 1 is 
frequently the optimal k value, larger values of k represented the optimal choice in our test 
problems, especially if curved boundaries and heterogeneities were present. The recommended 
all-round value for OMR and OM is k = 5. The main impression is that OM(5) and T/R-OMR(5) 
with ILU(0) preconditioning are very reliable and effective methods in all two-phase flows that 
have been tested here. 

The clearest conclusion to be drawn from the equation solver experiments is that the behaviour 
of the methods in 3D is different from that in 2D. This is due to the smaller number of non-zeros 
per matrix row in 3D, which leads to a significant increase in the work spent on calculating 
matrix-vector products. Finite difference methods do not exhibit the significant decrease in 
sparsity when going from 2D to 3D. Convergence results for equation solvers applied to finite- 
difference-generated matrices in 3D may therefore not be relevant to matrix systems arising from 
finite element discretization. 

The advantages of the present finite element methods over corresponding traditional finite 
difference methods are trivial implementation of boundary conditions at impermeable bound- 
aries and at wells with production proportional to mobility, less cross-wind diffusion and thus 
less grid orientation effects associated with ‘upwinding’ techniques, and, finally (and maybe most 
important), easy handling of complex reservoir geometries and potentially greater flexibility in 
construction of grids with local refinements. Our iterative matrix system solvers allow any 
structure of the non-zeros and hence any nodal numbering. However, this high degree of 
generality and robustness decreases the efficiency in comparison with finite diference methods on 
rectangle- or box-shaped domains. Two strategies are suggested for improving the efficiency. 
First, integrals should be calculated by one-point quadrature. This will particularly increase the 
efficiency of 3D simulations. Straightforward application of one-point Gauss quadrature has been 
tested here without success. Modifications in terms of stabilization matrices4’ seem therefore to 
be required. Secondly, a more vectorizable preconditioner for irregular matrix sparsity patterns 
should be found. Adaptive, local grid refinements around saturation fronts would represent 
another important improvement. 

Finally, we mention that the solution methods in this paper are in principle straightforwardly 
applicable to more physically complicated problems, such as black-oil or compositional models. 

APPENDIX I: PARAMETERS FOR THE WEIGHTING FUNCTIONS 

In the weighting functions given in (13), x1 and I C ~  are scalar parameters for which we have 
adapted ideas from the literature on convection-diffusion equations.’6,’7,41 

Spatial criteria 

the local frame onto the physical frame can then be written as 
Let t i  denote the co-ordinates in the local element frame. The Jacobian Di j  of the mapping from 

I 

D ,  = axj /a t i .  
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The Jacobian of the inverse transformation, i.e. the inverse of Eij, is denoted 

D~~ = ayj/axi. 

A ‘diffusion’ parameter E is defined as 

Let 

Adapting ideas from Hughes et al.” we have 

and 

K~ = max(0, lcll - K ~ ) ,  (25) 

In this paper we have used p = 2. ( v , ) ~  denotes the ith component of vt.  
In the PG2 formulation both K~ and K~ are as given above. K’ is set to zero in the PG1 

formulation. Observe that PGI and especially PG2 increase the non-linearity in the basic discrete 
equations. Non-linearities due to the weighting functions are treated explicitly when forming 
Jacobi matrices in the Newton-Raphson scheme. 

Temporal criteria 

A method related to the Taylor-Galerkin schemes for hyperbolic systems4’ is obtained by 
setting K~ = 0 and K~ = At/2; see also Reference 41. This choice is here termed PG3. An obvious 
extension is the PG4 formulation for which K~ = lc2 = At/2. 



TWO-PHASE FLOW IN OIL RESERVOIRS 677 

APPENDIX 11: EXPLICIT EXPRESSIONS FOR THE MATRIX SYSTEMS 

The Jacobian matrix J in the FI algorithm is an m x m block matrix where the contribution from 
element number e to block (i, j) can be written 

aFp)/anj aFp/aaj [ aFy’/anj aFy)/arrj 
The formulae for the matrix entries become 

9 = V I,VNi-VNjdR, an 
aV 

aaj aaj 
-- aFp’ - -VJaeVNi*-dS2, 

GifwItVNj.VSwdR, 

av 
aoj = { & i i M  + At ;Njv;VSW +fw L - V S ,  +fwv;VNj 

+ V[p:’Njh,VNi*VS, + p:(h$NjVNi.VS, + h,VNi*VNj)] 

+ WG&Njg.VNi -ywQ,GiM dR, 

W 
11 

a V  
2 = -I{NjVP, + pFNjIwVSw + pb(XwNjVSw + IwVNj) + - Nj(Xwpw + Xnpn)g. aaj V 

M is defined as 

Nj (consistent mass matrix), 
dij (lumped mass matrix). 

M = {  

In the SI algorithm the pressure is found from equation (19), where we have 

Bij = V A,VNi*VNjdfl, I 
bi = [VIZwp’,VNi.VSw - W(Iwpw + Inp,)g.VNi + NiQ,]dR - VN,v;ndT i 

Bij is easily seen to be symmetric and positive definite since we always have A, > 0. 

APPENDIX 111: ALGORITHMS FOR CGS, OM AND OMR 

The following two procedures for computing the initial residual and the matrix-vector product 
respectively are used later in the algorithms. 

function B(x,); 
begin 

.%?= b - AX,; 
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if preconditioning then 
a: = M- ' a; 

end 

function Y"(q); 
begin 

V:= Aq; 
if preconditioning then 

-Y:= M -  1V; 

end 

Conjugate gradients squared 

begin 
Compute M; 
r : = B ( x ) ;  

r : =  r; 
q:= 0; p :=  0; 

p 1 : =  1; 
s:= 0; 
while not converged do 
begin 

- 

s:= s + 1; 
p 2 : =  (r, i); 
B : =  P2IPli 
P1:= P2; 
v : =  pq; 
u : =  r + v; 
h : =  v + B2p; 
p : =  u + h; 
v : =  -Y(p); 
(T:= (F, v); a : =  p 1 / 0 ;  
q:= u - av; 
h : =  u + 9; 
v : = V(h);  
x : =  x +ah;  
r : =  r - av; 

end 
end 

Orthomin(k) 

begin 
Compute M; 
r :  = 9(x ) ;  
label start: 
q o : =  0; Po:= 0; 

0; 
s:= 0: 
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while not converged do 
begin 

m : =  min(s, k) ;  q : =  mod(s, + 1, k + 1);s:= s + 1; 
u : =  V(r); 
a i : =  (pi,u)$i; 
q,,: = r - zj=o ajqj; 

i = 0 , .  . . ,m, i # q 
rn 

I + ,  
m 

J + t t  
pq:= u - =&=o ajp j ;  

$ J q : =  1/(P,, P,,k 
0: = (r, Pq)$Jq; 
x:= x + oq,; 
r:= r -up,,; 
if restarted version and s = k + 1 then 

go to start; 
end 

end 

Orthominres( k )  

begin 
Compute M; 
ro : = W(xo);  
Po : = (ro, ro); 
label start: 
s:= 0; 
while not converged do 
begin 

m : = min(s, k);  
q : =  mod(s + 1, k + 1); 
j : =  mod(s, k + 1); s:= s + 1; 
p:= V(rj); 

~ ~ : = ( v , r ~ ) ;  t i := (p ,r i ) ;  i = O , .  . . ,m, i # q  
v : =  V(p); 

m 
s1 : = x:=o zi/pi; s, : = C t = O  &/pi ;  

o1 := x r = o  y i s i l p i ;  0, := C!=O $ / p i ;  

w1:= s,(-8, - 2h,s,/s, + h3 + ( s , / s2)2h2);  
0 1  := (8 ,  - h ,  + h,s,/s,)/w,; 
w,:= (1 - o,s,)/s,; 
ai:= (ti/s2 + o l y i ) / p i ;  i = 0, . . . , m, i # q 

x,:= o,p + o z r j  + rj + C i = o  aix i ;  

r,,:= -wlv - w,p + rj + C ~ = O  air i ;  

P,,: = (fq, rq); 

lf, I + , ,  

y i : =  ( S , T ~  - s , < ~ ) / s , ;  
h ,  : = (p, v); h, : = (p, p); h3 := (v, v); 

i = 0,. . . ,m, i # q 

m m 

t f t l  I # , ,  

m 

I ’,” 
c + t l  
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if restarted version and s = k + 1 then 
ro : = rs; 
xo : = xs; 
go to start; 

end 
end 

The solution is contained in xa. 
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